If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4p^2-12p-36=0
a = 4; b = -12; c = -36;
Δ = b2-4ac
Δ = -122-4·4·(-36)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-12\sqrt{5}}{2*4}=\frac{12-12\sqrt{5}}{8} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+12\sqrt{5}}{2*4}=\frac{12+12\sqrt{5}}{8} $
| .5(2x-4)=3x+8 | | 11x+55=10x+150 | | -5x+2+x+2=-5(x+2)+16 | | 2(x+3)=4x-17 | | 2/7f-1/7=13/14 | | x+x*0.1=11.5 | | 5x-20=4x-20+x | | 3x-72+15=x+5 | | 5x+40=5x+8 | | 30-y=22,10 | | -5y+2+y=-4y | | 6x-4(x-5)=40 | | 1.5x=61 | | 3x+6=8x+31 | | 8x+31=6x+3 | | X/3+2x/2=4 | | 10(9-x)+x=10x+(9-x)+27 | | 1(9-x)+x=10x+(9-x)+27 | | 33=15+k | | -8=3v | | 10q+3q+5+2=2(q-3) | | X+3x/3=4 | | 2x+6x/3=5 | | w+3/4+w-2/3=3 | | 4+p=−2 | | 0.5x-4=11 | | 2x=7x+x+15 | | (3x-1)/0.5=31 | | (2n−1)=4(n+5)+1 | | 2x=-(9)/(2) | | y/4+1/2=5/2 | | 2x=-9^2 |